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A finite-size scaling approach based on the transfer matrix method is developed to calculate the critical
temperature and critical exponent of the symmetric and the asymmetric two-layer three-state Potts models. For
similar intralayer interactions our calculation of the shift exponent � confirm some scaling arguments which
predict �=�, where � is the susceptibility exponent. For unequal intralayer interactions we have obtained �

=0.5 which differ from the prediction �=� /2 of a generalized mean-field theory.
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I. INTRODUCTION

The physical properties of various layered structures and
superlattices have been intensely studied both experimentally
and theoretically for reasons ranging from fundamental in-
vestigations of phase transitions to technical problems en-
countered in thin-film magnets �1�. Experimentally, sub-
monolayer and monolayer films of ferromagnetic materials
offer challenging opportunities to fabricate materials with
various magnetic properties, such as giant magnetoresis-
tance, surface magnetic anisotropy, enhanced surface mag-
netic moment, and surface magnetoelastic coupling. On the-
oretical grounds, surface magnetism has been treated within
several different frameworks: mean-field approximations �2�,
effective-field theories �3�, spin-fluctuation theory �4�,
renormalization-group methods �5�, two-site cluster approxi-
mations �6�, and Monte Carlo techniques �7�. Though each
method has it own advantages, they all have limitations in
treating film systems. Numerical techniques such as the
Monte Carlo method can provide very accurate results for
properties of finite systems; however, they are computation
intensive and can be carried out only for relatively small
system sizes.

The theoretical works on thin-layer systems are less gen-
eral. The system of coupled two-dimensional Ising planes on
regular lattices, e.g., the square lattice, is not exactly soluble;
however, it has been investigated by a variety of approximate
methods. Ballentine �8� used high-temperature series expan-
sions to study the model with J1=J2=J3, where J1 and J2 are
intralayer coupling constants for the first and the second
layer, respectively, and J3 is the interlayer coupling constant.
This work was later extended by Allan �9� to films up to five
layers and by Capehart and Fisher �10� to films up to ten
layers. The two-layer system where the interlayer coupling
constant differs from the intralayer coupling constant was
studied by Abe �11� in the context of a scaling theory valid in
the limit of a weak interlayer coupling. The more general
case in which J1�J2 has also received some attention. The

most complete treatment was that of Oitmaa and Enting �13�,
who combined mean-field theory, scaling theory, and high-
temperature expansions in a study of the two-layer model,
and calculated the variation of the critical temperature, the
layer magnetizations, and the interlayer correlation function
with J3. They predict the values of the shift exponent �,
which describes the deviation of the critical temperature
TC�J3� from the critical temperature in the decoupled limit
�J3=0�,

TC�J3� − TC�0� � J3
1/�. �1�

These theories predict that when the coupling J is the same
in each layer, then �=�, where � is the critical exponent
describing the divergence of the susceptibility upon ap-
proaching the critical point. Extending these scaling argu-
ments, it is suggested �13� that when the coupling J changes
in each sublattice, then �=� /2. However, calculations by
other methods indicated that the shift exponent for the two-
layer Ising model is equal to 1/2 for different values of the
interlayer couplings �14–16�. This paper is organized as fol-
lows. In Sec. II the transfer matrix method is briefly ex-
plained and the shift exponent for the asymmetric two-layer
Ising model is calculated. In Sec. III, the critical tempera-
tures and the shift exponents for the symmetric and asym-
metric two-layer three-state Potts models are calculated. A
review for the q-state Potts models can be found in �20�.

II. TWO-LAYER ISING MODEL

Consider a two-layer square lattice with periodic bound-
ary conditions composed of slices, each with two layers with
p rows, where each row has r sites. Each slice has then 2
� p�r=N sites and the coordination number of all sites is
the same �namely, 5�. In the two-layer Ising model, for any
site we define a spin variable �1�2��i , j�= ±1, in such a way
that i=1, . . . ,r and j=1, . . . , p, where the superscript 1�2�
denotes the layer number. We include the periodic boundary
conditions as

�1�2��i + r, j� = �1�2��i, j� ,

�1�2��i, j + p� = �1�2��i, j� . �2�*Email address: b.mirza@cc.iut.ac.ir
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In this paper, we discuss the anisotropic ferromagnetic
case with nearest neighbor coupling �J=J1 /kT, J1=2J2, J1
=1�, where J1 and J2 are the nearest neighbor interactions in
the first and second layers, respectively, and with interlayer
coupling J3 /kT. We take only the interactions among the
nearest neighbors into account. The configurational energy
for the model may be defined as

E���
kT

= −
1

kT
�
i=1

r*

�
j=1

p*

�
n=1

2

�Jn�n�i, j��n�i + 1, j� + Jn�n�i, j��n�i, j

+ 1�� −
J3

kT
�
i=1

r

�
j=1

p

�1�i, j��2�i, j� , �3�

where the asterisk indicates the periodic boundary conditions
�Eqs. �2��. The canonical partition function Z�J� is

Z�J� = �
���

e−E���/kT. �4�

Substitution of Eq. �3� into Eq. �4� gives

Z�J� = �
���i�,1�

¯ �
���i�,p�

	1
T
2�	2
T
3� ¯ 	p
T
1� , �5�

where


j� = 
�1�1, j�� � 
�2�1, j�� � 
�1�2, j�� � 
�2�2, j�� � ¯

� 
�2�r, j�� , �6�

�
���i�,j�

= �
�1�1,j�

�
�1�2,j�

¯ �
�1�r,j�

�
�2�1,j�

�
�2�2,j�

¯ �
�2�r,j�

. �7�

By orthogonal transformation, the T matrix can be diagonal-
ized where Eq. �4� for the large values of p can be written as

Z�J� = trTp � ��max�p, �8�

where �max is the largest eigenvalue of T. From the well
known thermodynamic relation for the Helmholtz free en-
ergy, A=−kT ln Z, along with Eq. �8� the following results
are obtained:

a�J� =
− A

NkT
=

ln �max

r
, �9�

u�J� =
�a�J�

�J
�10�

where u�J� and a�J� are the reduced internal energy and
Helmholtz free energy per site, respectively.

For the two-layer square lattice with size r, using Eq. �8�,
the elements of the T matrix have been calculated numeri-
cally. We have employed a method �17–19� for reducing the
size of the transfer matrix and the �max was calculated with a
high precision for different J3 values. The reduced internal
energy has been calculated for a two-layer square lattice with
r=3,4 ,5 ,6 ,7 ,8 for different values of J3. In order to obtain
the value of the critical temperature JC, the intersection point
for two unlimited lattices with different sizes should be
found �19�. However, such a point may be predicted if we
have an expression for the intersection point in terms of 1/n,

where n=4rr�. As shown in an earlier work, for the two-
dimensional and the two-layer Ising model the critical tem-
perature may be approximated as a general polynomial of a
certain degree,

Jn = �
j

aj�1

n
 j

�11�

where the values of the aj’s have been calculated using the
least squares method �19�. If we assume that Eq. �11� is
applicable for large lattice sizes then for the limit of n→�,
JC is equal to a0. We have done similar calculations for the
two-dimensional three-state Potts model �21�. Our results
were in complete agreement with earlier results already ob-
tained by other methods. So one may decide to generalize the
method of calculation to the two-layer Potts model. Such
calculations have been done for different values of J3. The
results are given in Table I. In Fig. 1 we illustrated the inter-
section and its extrapolated critical points. It is clear that
when the size of the lattice becomes larger the intersection
points approach each other and so the critical point can be
investigated.

In this model an interesting situation appears when the
interlayer coupling J3 becomes infinitesimally small com-
pared to the intralayer coupling J1 and J2. For this case we
have used Eq. �1� and data in Table I to obtain the shift
exponent �. The calculated values for this parameter are
given in Table II. Our calculation for the shift exponent of
the asymmetric two-layer Ising model gives ��0.55 and is
in agreement with the result which has already been obtained
in �15�.

TABLE I. The calculated critical temperature of the asymmetric
two-layer Ising model �the exact value for J3=0 is JC= �1/2�ln�1
+�2�=0.440 687�.

J3

Calculated critical
temperature �JC�

0 0.439846

0.001 0.439845

0.005 0.439837

0.009 0.439822

0.01 0.439815

0.03 0.439595

0.05 0.439182

0.07 0.438625

0.09 0.437968

0.1 0.437607

0.3 0.427430

0.5 0.413695

0.7 0.400044

0.9 0.387811

1 0.382240

1.1 0.377145

1.3 0.367875
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III. TWO-LAYER THREE-STATE POTTS MODEL

Although we do not know the exact solution of the Potts
model for two-dimensional lattices at present time, a large
amount of numerical information has been accumulated for
the critical properties of the various Potts models. The reason
for the extension of our approach to the two-layer three-state
Potts model is the fact that such a model is an important
testing ground for different methods and approaches in the
study of critical phenomena.

For the two-layer square lattice Potts model with size r,
we can use transfer matrices as in the two-layer Ising model
and calculate the largest eigenvalues. The size of the original
matrix for the two-layer three-state Potts model is much
larger than the size of the matrix of the two-layer Ising
model and so numerical calculations are more difficult. For
example, on strips with width r=3,4 we have matrices of
order 64,254 for the two-layer Ising model, and matrices of
order 729,6561 for the two-layer three-state Potts model, re-
spectively. The order of transfer matrices for strips with
r ,r�=2, 3, 4, and 5 is equal to 81, 729, 6561, and 59049
which can be reduced to 21, 92, 498, and 3210, respectively.
The size of the reduced transfer matrix is much smaller than
that of the original transfer matrix T and so �max can be
easily calculated from the reduced matrix.

In this section we first investigate the three-state Potts
model on a symmetric two-layer lattice, where the intralayer
couplings are the same �J1=J2�. By increasing the interlayer

couplings J3 from 0 to 1.2 we have calculated the reduced
free energy per site for four different strips with r ,r�
=2,3 ,4 ,5. We have calculated the critical points by a similar
method which is explained in Sec. II. The critical points and
shift exponent are given in Tables III and IV. The value of
the shift exponent is equal to 1.44±0.05.

For a symmetric two-layer lattice the scaling theories
�11,12� predict that when the coupling J is the same in each
layer, then �=�, where � is the critical exponent describing
the divergence of susceptibility upon approaching the critical
point. Our result is in agreement with the theoretical value,
i.e., �=1.44. However, for asymmetric two-layer models this
theoretical prediction is not correct. For an asymmetric two-
layer Ising model the value of the shift exponent is equal to
1/2 �15�.

Our aim in this work is to calculate the shift exponent for
the three-state Potts model on an asymmetric two-layer lat-
tice. Our numerical calculations for the critical points and the
shift exponent are given in Tables V and VI. It is interesting

FIG. 1. Extrapolated critical temperature for the asymmetric
two-layer Ising model. Curves with black points include intersec-
tion points and curve with empty circles includes extrapolated criti-
cal temperatures.

TABLE II. Shift exponent for the asymmetric two-layer Ising
model �the exact value for J3=0 is expected to be �=1/2�.

J3 �

0.07,0.09,0.1,0.3 0.559653

0.05,0.07,0.09,0.1,0.3 0.576416

0.05,0.07,0.09,0.1 0.584866

TABLE III. The calculated critical temperature of the symmetric
two-layer three-state Potts model �the exact value for J3=0 is JC

=ln�1+�3�=1.005 052�.

J3

Calculated critical
temperature �JC�

0.000 1.052495

0.003 0.982836

0.005 0.980552

0.007 0.978269

0.009 0.975994

0.010 0.974860

0.050 0.935379

0.090 0.907997

0.100 0.902499

0.500 0.795385

0.600 0.778996

0.700 0.764166

0.800 0.750573

0.900 0.737999

1.000 0.726306

1.100 0.715379

1.200 0.705136

TABLE IV. Shift exponent for the symmetric two-layer three-
state Potts model �the exact value for J3=0 is �=�=13/9
=1.444 444�.

J3 �

0.003,0.005,0.007 1.45285

0.003,0.005,0.007,0.009 1.42794

0.003,0.005,0.007,0.009,0.01,0.05 1.38958

0.003,0.005,0.007,0.009,0.01,0.05,0.09,
0.1,0.5

1.35199
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that the shift exponent is equal to 1/2 and its value is equal
to the Ising model case. In this part we argue that one may
expect the value 1/2 for the shift exponent.

Let us consider four spins in the corners of an elementary
square with interactions like those shown in Fig. 2. Decimat-
ing over s3 and s4 �spins of the second layer�, we obtain that
the coupling between s1 and s2 changes by J	. This additional
interaction has to satisfy the condition

Ae
J	�	�s1,s2�� = �
s3,s4

e
�J3�	�s1,s3�+	�s2,s4��+J2	�s3,s4�� �12�

where A is an unimportant factor. This condition is equiva-
lent to the following set of equations:

Ae
J	 = e
�2J3+J2� + 4e
J3 + 2e
J2 + 2,

A = 2e
�J3+J2� + e2
J3 + 2e
J3 + 2e
J2 + 3, �13�

with the solution

J	 =
1



ln� e
�2J3+J2� + 4e
J3 + 2e
J2 + 2

2e
�J3+J2� + e2
J3 + 2e
J3 + 2e
J2 + 3
 . �14�

Expanding the right-hand side of Eq. �14� one can easily
check that for small J3 we have J	�J3

2. Thus, spins of the
second layer effectively change the coupling in the first layer
into J1�=1+CJ3

2, where C is a certain constant. Since the
critical temperature of the square lattice Potts model is pro-
portional to the coupling; thus TC�J3�−TC�0��J3

2 and �
=1/2 easily follows. At this time we do not know a complete
proof for our numerical result. The calculated value is equal
to 1/2 which is different from that of the original scaling
arguments �11,12�. It seems that for unequal intralayer inter-
actions the shift exponent is equal to 1/2 for an arbitrary
q-state Potts model.

IV. SCALING ANALYSIS

One may use a phenomenological renormalization based
on the largest eigenvalue �max of the transfer matrix to verify
the above arguments �22�. According to finite-size scaling
theory, the singular part of the free energy per spin of the s
spins has the scaling from ar�t ,J3�=r−dA�ryt ,r�yJ3�, where
t�T−TC�J3=0�, d=2, and y=1/� is the thermal scaling in-
dex �ar=ln �max/r�. For the Ising model y=1, and for the
three-state Potts model y=6/5. Differentiating ar�t ,J3� twice
with respect to t, one finds that the specific heat per spin
scales as cr�t ,J3�=r2y−dG�ryt ,r�yJ3� and so for J3=0 we ob-
tained the thermal exponent y from

� r�

r
d−2y

=
cr

cr�
. �15�

Differentiating ar�t ,J3� twice with respect to J3 we arrive at

� r�

r
d−2�y

=
�2ar/�J3

2

�2ar�/�J3
2 �16�

and so one may obtained the shift exponent by using Eq.
�16�. We have obtained the thermal exponent y by evaluating
the right-hand side of Eq. �15� for t=0, i.e., JC=ln�1+�3�
and J3=0, where the results are given in Table VII. Then �y
is calculated by considering the right-hand side of Eq. �16�

TABLE V. The calculated critical temperature of the asymmetric
two-layer three-state Potts model �the exact value for J3=0 is JC

=ln�1+�3�=1.005 052�.

J3

Calculated critical
temperature �JC�

0.000 1.052495

0.001 1.050030

0.003 1.045497

0.005 1.041418

0.007 1.037615

0.009 1.034370

0.010 1.032804

0.030 1.020268

0.050 1.011642

0.070 1.000748

0.090 0.994273

0.100 0.989953

0.500 0.943733

0.600 0.931359

0.700 0.918790

0.800 0.906272

0.900 0.893978

1.000 0.882024

1.100 0.870482

1.200 0.859397

TABLE VI. Shift exponent for the asymmetric two-layer three-
state Potts model �the exact value for J3=0 is expected to be �
=1/2�.

J3 �

0.07,0.09,0.1 0.518406

0.07,0.09,0.1,0.5,0.6,0.7 0.487023

0.07,0.09,0.1,0.5 0.504776

0.07,0.09,0.1,0.5,0.6 0.494463

FIG. 2. An elementary interlayer square. We decimate over
spins s3 and s4.
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for t=0, i.e., J3=0 �small values of J3 have been used for
differentiating ar�t ,J3� twice with respect to J3�. Finally,
from the values of y and �y one can find the shift exponent
which is given in Table VII. For the asymmetric two-layer
three-state Potts model with different lattice sizes r ,r�
=2,3 ,4 ,5, the calculated shift exponent by this method is
about 0.6. A part of our results for J3
=0.02,0.03,0.05,0.07,0.09 is given in Table VII.

V. CONCLUSION

In this paper a numerical method has been used to calcu-
late the critical properties for the two-layer spin systems. The
critical temperatures and the shift exponent are calculated.
For the symmetric two-layer three-state Potts model with
similar intralayer interactions our calculations of the shift
exponent � confirm some scaling arguments which predict
�=�=1.44. For the asymmetric two-layer three-state Potts
model with unequal intralayer interactions our calculations
of the shift exponent � differs from the prediction �=� /2 of
a generalized mean-field theory. Our result indicates that the
shift exponent for the two-state Ising and the three-state Potts
models are equal to 1/2. This result implies that the value of
the shift exponent may be independent of the value of q in
the q-state Potts model.
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